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ABSTRACT

A metamodel is a relatively small, simple model that approximate
the “behavior” of a large, complex model. A common way to
develop a metamodel is to generate “data” from a number of large-
model runs and to then use off-the-shelf statistical methods without
attempting to understand the model’s internal workings. It is much
preferable, in some problems, to improve the quality of such
metamodels by using various types of phenomenological
knowledge. The benefits are sometimes mathematically subtle, but
strategically important, as when one is dealing with a system that
could fail if any of several critical components fail. Naive
metamodels may fail to reflect the individual criticality of such
components and may therefore be misleading if used for policy
analysis. By inserting an appropriate dose of theory, however, such
problems can be greatly mitigated. Our work is intended to be a
contribution to the emerging understanding of multiresolution,
multiperspective modeling.

Keywords: metamodel, multiresolution modeling, model
abstraction, response surfaces, repro models, statistics,
regression, intelligent machines, robotics, machine planning

INTRODUCTION

A metamodel is a relatively small, simple model intended to
mimic the “behavior” of a large, complex model. Two
reasons for wanting to build metamodels are.[1]:

- Cognitive. We want to “understand” why the large
model behaves as it does. This will enhance the
model’s meaningfulness and credibility with ourselves,
other analysts, and with whomever we seek to
influence.

- Exploratory analysis. We often want to explore the
behavior of a model over a large part of its domain. A
metamodel with only, e.g., 5-10 (rather than hundreds
or thousands) of variables makes comprehensive
exploratory analysis feasible and comprehensible[2],

[3].

Sometimes, it is possible to build models using
multiresolution modeling design principles [1], in which case
the low-resolution versions (the more abstracted or aggregate
versions) already have these virtues. Often, however, the
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baseline situation is that a subject area has been modeled
only in detail. Often, the detailed model is old, opaque, and
difficult to work with. A metamodel, then, is an attempt to
generate a low-resolution version after the fact.

Consider first two extreme approaches to building a
metamodel. For the statistical approach, one runs the large
model many times for a variety of inputs; one then collects
the inputs and outputs in a big dataset. A statistician
analyzes these data as he would data collected in any series
of experiments. He seeks a statistical model that does a good
job of estimating outputs, while using as few input variables
as possible so as to keep the model simple and so as to avoid
“overfitting” his initial data.

An idealized phenomenological (or theory-driven) approach
starts with the most exact theory available and derives a
simplified model by rigorously aggregating (as in replacing
integrals over volume with a representative value times the
volume), rearranging and combining terms and factors, and
so on—using physical insights wherever possible (e.g.,
recognition of some conservation principles or of being able
to view a factor as an idealization times an efficiency factor).

Some statisticians, operations researchers, and computer
scientists prefer the first approach and want to know nothing
about the “innards” of the model whose behavior they are
attempting to replicate. They may have a purist philosophy
of “allowing the data to speak,” without “contaminating it”
with theoretical assumptions. Or they may simply prefer not
having to deal with the complexities of the model’s innards:
they may wish to turn the problem over to automated
software. At the other extreme, some theoretically inclined
academicians clearly prefer the second approach because it
allows rigorous tying together of phenomena at different
levels of detail (as when classical thermodynamics is
understood from quantum mechanics). These, then, are the
extremes. Most scientists, engineers, and analysts, however,
should prefer something in between. Often, the “in-
between” amounts to an analyst postulating some simple
scaling relation and using data to calibrate that scaling



relation. The scaling relation may be naive and the
calibration may use only the crudest of statistics.

Our interest in this research was to clarify principles for
doing better. We had some ideas for how to do so, based on
theoretical reasoning, but we preferred where possible to test
and iterate ideas by experimenting with specific well-posed
problems. With that in mind, we used a well-documented
model that we could consider “large and complex model”
and applied our ideas in stages, starting with pure statistical
metamodeling and moving toward more theory-informed
work. In what follows, we first discuss how one should
judge the quality of a metamodel. We then describe our
experiments and conclusions. The discussion adds to an
earlier preliminary discussion [4] and is drawn from a longer
and more technical piece [5].

WHAT MAKES A METAMODEL GOOD

We suggest five criteria for assessing the goodness of a
metamodel, heroically assuming for the sake of this
discussion only that the base model is in fact accurate:

Goodness of fit. Obviously, we want the metamodel’s
predictions to be reasonably consistent with those of the
baseline model. A measure of this is the root mean square
error (or fractional error) of predictions across the domain of
input values. This is superior to the commonly used R*.

Parsimony. For purposes of both cognition and exploratory
analysis, a good metamodel will have relatively few
independent variables, which ideally, would also be
meaningful. Achieving parsimony may be accomplished by
omitting some of the baseline model’s inputs (i.e., treating
them as constant) or by combining several base model inputs
into a smaller number of intermedate variables. The set of
independent variables should be rich enough to represent the
issues being addressed with the model. Beyond that, the
fewer extra variables, the better.

Identification of “critical components.” Our third criterion
seems new and we believe it to be crucial. Many uses of
models in analysis involve systems or strategies, the failure
of which is to be very much avoided. We suggest that a
metamodel should highlight all of the input variables that are
essential to success—especially when troublesome values of
those variables are plausible. The model should not give the
impression that one can compensate for a weak component
of the system by improving some other component (if such
substitution is in fact inadequate). This is a significant
consideration in metamodeling, because standard statistical
methods lead to linear sums that imply substitutability. We
refer to components that must individually succeed (have
values above or below an appropriate threshold) as critical
components. If critical components in this sense exist, the
metamodel should be appropriately nonlinear.

Reasonable depiction of relative “importances.”
Metamodeling can generate statistical measures of the

significance or importance of candidate variables. In
stepwise regression, the less significant variables are
dropped. That, in turn, could mean that someone using the
metamodel for resource allocation would consider the
dropped variables as unimportant. A good metamodel would
give no misimpressions on this score.

A good storyline. Without a story, a model is just a “black
box.” A story explains why the model behaves as it does.
More, it relates the model to the real world, telling us why
the model should behave as it does. We use the term
“storyline” because all models are a simplification of reality,
but we intend no cynicism. Said differently, the model
should be “physically (or otherwise phenomenologically)
meaningful and interpretable,” not just a math formula.

With this background defining what we mean by a good
metamodel, let us now describe the analytical experiments
we conducted to illustrate and sharpen our understanding of
ways to improve metamodeling.

THE EXPERIMENT

Our experiment was to begin was a relatively large and
complex model and to develop a series of metamodels to
represent it. For the first metamodel we relied almost entirely
on statistical methods, uninformed by phenomenology (i.e.,
our knowledge of the workings of the base model). With
each successive metamodel, we took advantage of
progressively more phenomenology.

The Large Model

Our “large, complex model” (i.e., our baseline model) was
EXHALT-CF [5],[6], which treats the so-called halt phase of
a military operation. Although much simpler than real base
models of interest, it has scores of variables and a great many
nonlinearities. It seemed complex from its documentation
and program.

In its simplest version, the halt phase is a mere race. An
attacking force (Red) is advancing on an objective while the
defenders (Blue) interdict its armored vehicles with long-
range fires. Red will halt when he reaches his objective (a
Red win) or when Blue has killed a specified number of
vehicles (a Blue win), whichever comes first. EXHALT-CF,
however, adds many embellishments relevant to current
strategic concerns about real-world military operations,
especially in the Persian Gulf.

First, the model must represent Blue deployments. Some
number of shooters may be stationed in theater in peacetime.
Depending on strategic warning, diplomatic relations, Red’s
deceptiveness, and Red’s ability to threaten bases in theater
(e.g., with weapons of mass destruction), Blue may or may
not be able to augment this number before Red begins his
advance. Once Red’s advance begins, Blue will deploy more
shooters into the theater, up to a theater capacity, which
reflects logistical shortcomings.



The effectiveness of Blue shooters is measured by kills per
shooter-day. Early in the campaign, Blue may be unable or
unwilling to attack the Red column because of Red air
defenses. After a period of air-defense suppression, Blue’s
attacks will start. Even then, however, sortie rates may be
reduced because of a continued threat of attack with mass-
destruction weapons, which would force Blue personnel to
work in protective gear or would force Blue to operate from
more distant, and more poorly prepared bases.

The weapons and strategy Blue selects will also influence
Blue shooter effectiveness. Blue may select an area weapon,
capable of killing several Red armored vehicles per shot. To
counter this, Red may space his vehicles more widely. Or
Blue may select a point weapon, which kills no more than
one vehicle per shot, and is unaffected by Red’s vehicle
spacing. Also, Blue will likely have limited supplies of his
best weapons, and revert to lesser weapons when his best are
exhausted. Blue may attack the entire Red column in depth
(the “In Depth” strategy) or focus his attack on the leading
edge (the “Leading Edge” strategy). If Blue does the latter,
his attack may slow Red, but each sortie may be less
effective due to deconfliction problems.

These and other complications of the halt problem are
represented in EXHALT-CF and the simulation version,
EXHALT. They are implemented in Analytica™, a graphical
modeling environment for the personal computer.
EXHALT-CF has 63 inputs, 8 switches to turn features on or
off (the model has a multiresolution, multiperspective
design) , three indexes, and 451 variables that are calculated
directly or indirectly from inputs. For our purposes, we
focused on a subset of cases, which reduced to 25 the
number of input variables affecting the problem. This
seemed adequately complex to illustrate our points—or,
more accurately, to allow us to experiment. The experiments
in question were experiments of discovery and learning, not
rigorous hypothesis testing.

The Experimental Data

We selected statistical distributions, mostly uniform
distributions, from which to generate the 25 variable-value
inputs. We then ran EXHALT-CF to generate a Monte Carlo
sample of 1000 cases from the overall input space. We did
not weight one or another region of the input space because
we were seeking a broadly good fit of behavior over the
entire domain of interest.

METAMODELING
Metamodel 1

In our first experiment, we acted as though we had handed
the dataset to a statistician (or statistically oriented
operations researcher or computer scientist), and
commissioned him to develop an estimator for the halt
distance that Blue could achieve using his best strategy and
weapon type for the circumstances of the case. A good

statistician would insist on discussing the problem. He
would want to know which data elements to use as
independent variables, which are outcome variables, and so
on. Even if he preferred to operate as thought the original
model is a “black box,” he would probably want at least
some interpretation of the variables’ meanings. This would
permit him to do some data manipulation that would simplify
his analysis.

For his initial analysis, our simulated statistician specified a
linear model with 25 independent variables. Because he
knew that we wanted a parsimonious metamodel, he ran a
stepwise linear regression procedure in which the
independent variables were added to the model one by one in
the order of decreasing explanatory power. That is, the first
variable considered yielded the largest reduction of the root
mean square of the residual error (RMS Error. After the first
six or seven variables, further additions didn’t improve the fit
very much. Actually, the fit wasn’t very good no matter
how many variables were included (the standard error was
on the order of 25%, which in this problem is large).

In any case, our simulated statistician stopped with 14
variables, all coefficients of which were significant at the
0.05 level.

How good was metamodel 1? Earlier we identified five
features that make a metamodel good. The performance was
not impressive, although, in our experience with
metamodeling pure statistical approaches such as this not
uncommonly do quite well by the average goodness-of-fit
criterion. Still, in this case, there were 421 cases in which
Red actually reached his objective and the model estimated
that Red was halted short of his objective in 92 percent of
them.

Parsimony was our second criterion for a good metamodel.
This model had 14 variables. We would like fewer, but this
was perhaps a marginally acceptable number.

Identification of critical components was our third criterion.
Here Metamodel 1 performed very poorly. Such metamodels
are linear in the variables identified as significant by the
statistical analysis. Thus, when used, metamodel 1 failed to
identify and highlight critical components. For example, the
model would predict that by merely improving munitions
sufficiently, Blue could guarantee a small halt
distance —independent of the other variables. That is flatly
wrong. The model also gave a very misleading sense of the
relative importance of variables. After stepwise regression,
one variable had dropped out, while another —which entered
the problem in precisely the same way (if the variables were
X and Y, they entered the problem only through the product
XY)—was retained as significant. This could be a very
serious shortcoming if the model were used to inform
resource-allocation decisions. Also, as discussed earlier, ur
final criterion for a good metamodel was that it have a good
storyline. This metamodel had no storyline at all.



Metamodel 2

A statistician will often try to improve his model by
introducing transformations of the independent variables,
such as exponentials, powers, and products of variables.
That is, he will still use linear regression, but with some of
the variables of that regression being nonlinear composites of
others. So many possible transformations of variables are
possible that the statistician may need some guidance
selecting which ones to try. Brute force (e.g., considering all
of the quadratic combinations of elementary variables as
new, composite variables) can result in a good fit, but usually
with even more statistically significant variables and no
“story.”

Phenomenology (i.e., the “innards” of the baseline model)
can suggest what transforms to try, including transforms that
statisticians do not generally consider. These include
transforms that use the MAX and MIN operators. Indeed, a
number of transformations are built into EXHALT-CF. We
designed it as a multi-resolution model, to permit the user to
specify inputs at different levels of detail. Even if the
metamodeler finds EXHALT-CF as a whole to be big and
complex, even early chapters of documentation, which deal
with various idealizations, are sufficient to highlight natural
composite variables. They may not fully substitute for the
more elementary variables, because the “real” EXHALT-CF
(as distinct from the simplified versions discussed in early
documentation chapters) includes more complex interactions.
Nonetheless, we thought that the suggested composite
variables (“aggregation fragments”) might go a long way.

For Metamodel 2, then, we looked at a number of such
composites.”

The simulated statistican then defined a linear model with far
fewer variables, many of them the composites.

How good was metamodel 2? The performance, while
considerably better than Model 1, was still not impressive.
The standard error was perhaps 80 km, rather than 140 km
(with interesting values being in the range 0-600).

On grounds of parsimony the model was better, since only
ten independent variables proved to be statistically
significant.

The good news was that the model did predict the critical-
component phenomenon: we had identified enough of the
key composite variables so that we could see importaant
nonliearities. In particular, to obtain a good halt distance,
Blue had to address three issues simultaneously (with no
substitution). These involved the number of initial shooters,
the earliest time at which Blue could begin attacking Red
effectively, and the number of “shooter days” required for
success (a functon of Red’s size and Blue’s effectiveness per
attack mission). This important “system feature” stood out.

However, this metamodel still did not have a storyline,
although the variables at least had more physical
significance.

Metamodel 3

So far the simulated statistician had been combining the
original, low-level variables into intermediate variables that
we thought were reasonable on phenomenological grounds.
We might characterize this as a “bottom-up” strategy. Now
we turned to a “top-down” strategy. We viewed this as
explicitly building in a storyline. It depended on an
understanding of phenomenology, but it not require that the
theory for describing that phenomenology be analytically
tractable (e.g., solvable in closed form).

One piece of knowledge used was inferrable from even
minimal documentation of EXHALT-CF, to wit that the
model considered two different Blue strategies and took the
better of the two results as the answer. The model did
similarly in comparing two different classes of weapons. In
the earlier metamodels, these branches and use of
MIN/MAX operators was all buried, but in Metamodel 3 we
built that same macro logic in. This meant that Metamodel 3
actually involved four metamodels, plus logic to compare
results from each.

More important, we inserted physical reasoning in simplified
terms. Upon thinking about the problem physically, we
could reason that the halt time was just the time required to
kill the requisite number of Red targets. However, that
depended on the number of Blue shooters, which increased
linearly with time (subject to some further constraints in the
full model), the size of the Red force, and the per-shooter-
day effectiveness of Blue. We could write a simple
analytical equation for this—so long as we glossed over
details and inserted averages. We estimated an integral by
the product of a time duration and the average number of
shooters within the interval (without knowing precisely how
to calculate that average).

We then made a very crude estimate of this and other
averages. The result was dimensionally correct and not
absurd, but it was not intended to be accurate.

What we were looking for was structural form. This we
postulated as the basis for Metamodel 3, although building in
fudge factors to measure error in the form assumed.

How good was metamodel 3? Metamodel 3 fitted the data
much better than either of the two previous metamodels. It
was also much more parsimonious than the previous
metamodels. It had only five significant variables and the
fudge factors proved to be not very large. Thus, the “story”
understandable from the highly simplified model that did
violence to mathematics by, e.g., treating an integral as a
product of a duration and an average value during the period,
was largely correct.



The model also did well in predicting the critical-component
phenomenon. The composite variables that made ths
possible in Metamodel 2 were also present in Metamodel 3,
but now with a better story. Nor were there any serious
errors with respect to the relative importance of variables.
All in all, results were rather good: building in the
approximate structure had paid off handsomely.

Metamodel 4

The last metamodel that we considered pushed the analytic
work further. Upon reflection, it was possible—in this
particular problem—to do a much better job of estimating
the average number of shooters present during the halt phase.
This required nothing more profound than simple integration
and relatively simple algebra. A good student of first year
calculus would be able to do the problem without difficulty.
If we inserted this knowledge, the resulting metamodel was
exceedingly accurate—so much so that it was embarrassing.
The results demonstrated that the complexity of EXHALT-
CF was the result of essentials having been obfuscated by the
programming. The subtleties and complications were simply
not necessary when the numbers were crunched.

Interestingly, however, Metamodel 4 was not better than its
predecessor by our criteria. Why? Because, in the process
of inserting the improved solution, the structural form
became more complicated and non-transparent. This
obscured the story, making it impossible to actually put the
model up on viewgraph and explain what was going on as,
e.g., a product of three meaningful variables divided by a
fourth, with a small error term reflecting the many
simplifications involved. If we wanted clarity and insight,
then Metamodel 3 was arguably better. We say “arguable,”
because with clever presentation one could hide some of
Metamodel 4’s complications.

SUMMARY AND LESSONS LEARNED

Our experiments confirmed our belief that much could be
gained by combining virtues of statistical and
phenomenological (theory-informed) approaches. They
confirmed and give more precise arguments to our
skepticism about approaching metamodeling as an exercise
in pure data analysis, with the baseline model merely being a
black-box generator of data. Although the experiment dealt
with only a single baseline model, the insights appeared to us
to be relatively general —at least for purposes of suggesting
general cautions and approaches to consider. We intend no
grand claims here, but those were (and are) our impressions.

In our experiments, the application of statistical methods
uninformed by phenomenology did not produce a good
metamodel. In part it failed because the data we were fitting
describe a highly nonlinear surface. A linear model might fit
locally, but never globally. Moreover, there was no
guarantee that the regression coefficients would be a good
guide to the relative importance of the independent variables.

It was necessary to introduce nonlinear combinations of the
low-level inputs in order to obtain a good fitting metamodel.
Phenomenology could motivate the construction and
selection of the appropriate nonlinear combinations. It
would be very difficult to discover them from the data alone.

A linear model also failed because the data did not describe a
smooth surface. Like many models, EXHALT-CF makes
liberal use of MAX and MIN operators to make either-or
choices. So the data described a surface with “kinks” in it.
When one fits a kinky surface with regression, the
coefficients obtained from regression don’t need to make
sense. The regression results tell us the average importance
of inputs, but not when each one is important. We found it
necessary to use phenomenology to separate the smooth
segments of the surface, after which we could do a good job
of fitting each smooth segment with just plain statistics.

As we introduced more and more phenomenology, we
obtained successively better fitting models. We would argue
that in addition, Model 1 had very little cognitive value (i.e.,
it didn’t tell a story) and Model 2 had only a little more.
Model 3, however, did tell a coherent story, one that could be
related persuasively to the client. With Model 4 it could be
argued that we began to lose cognitive value. The
phenomenology became more complex and less transparent.
All the equations began to obscure the story.

Particularly important also is that by inserting
phenomenologically motivated structure one can avoid
certain important blunders of system depiction. In particular,
one can preserve and even highlight the role of critical
components—components that enter the problem more
nearly as products than as sums, or components that must
individually have threshold values to avoid system failure.
This is particularly important if metamodels are to be used in
policy analysis or design. We would expect it to be quite
important in design of intelligent systems, because we would
expect it to be normal, not unusual, for designers to be
worried about numerous independently critical factors.
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